

5
th

 World Conference on

Applied Sciences, Engineering & Technology

02-04 June 2016, HCMUT, Vietnam

WCSET 2016074 Copyright © 2016 BASHA RESEARCH CENTRE. All rights reserved

Trajectory optimization for chess-playing robot arm

THANH NHAT LUONG
1
, HOANG LIEN SON CHAU

1
, TRI CONG PHUNG

1
, DUY ANH NGUYEN

1

1
Department of Mechatronics, the Faculty of Mechanical Engineering,

HCM City University of Technology, Vietnam

Email: duyanhnguyen@hcmut.edu.com

Abstract: Planning optimal trajectory is one of frequent and essential problem in controlling robot arm,

especially in the condition of existing many obstacles in workspace. A chess match with human is an interesting

and completely suitable issue to experiment the automatic operation of robot arm. In this paper, Dijkstra

algorithm, was applied to optimize the trajectory of a SCARA which can carry out chess moves following

shortest path and evade other chess pieces. Chess moves were also played and evaluated in real match with

human.

Keywords: Dijkstra Algorithm, Trajectory Optimization, Automatic Chess-Playing Robot

Introduction:

Chess is a two-player strategy game played on

chessboard. Beating grandmasters in not only

classical chess match but also in rapid and blitz is the

target of researchers. Therefore, it is necessary to

optimize some criteria such as: trajectory, operation

time for robot arm. Optimal trajectory method using

Dijkstra algorithm is focused within this paper.

Firstly, a 3DOF manipulator system was established.

Then, the status of chess match was determined

continuously basing on images captured by camera.

After that, optimal trajectory was calculated and

selected. Finally, results of simulation and

experiment processes are compared.

Detecting chessboard status:

Before conducting a response move, system must

identify the move of opponent. A camera which was

hung above chessboard is responsible for that task.

Algorithm for detecting chess moves was presented

in [1]. After that, chessboard status (including

position and the height of chess pieces) was

determined by a chessboard matrix (Figure 1).

 1 2 3 4 5 6 7 8

A 2 1 0 0 0 0 -1 -2

B 3 1 0 0 0 0 -1 -3

C 4 1 0 0 0 0 -1 -4

D 5 1 0 0 0 0 -1 -5

E 6 1 0 0 0 0 -1 -6

F 4 1 0 0 0 0 -1 -4

G 3 1 0 0 0 0 -1 -3

H 2 1 0 0 0 0 -1 -2

Figure 1: Chessboard matrix at beginning

Each chess piece is assigned by a number such as:

Pawn: number 1, Rock: number 2, Knight: number 3,

Bishop: number 4, Queen: number 5, King: number 6

and empty cells: number 0. Opponent pieces have

negative values. This matrix will update after every

move.

The height of each chess piece was known, thus, it is

easy to establish chessboard status (Figure 2).

Figure 2: Chessboard status

Dijkstra algorithm in trajectory optimization:

Before applying the Dijkstra algorithm, it is

necessary to define the matrix with weights for the

network graph G (V, E), where V is the number of

vertices in the graph and E is number of edges [2].

After network graph G was established, Dijkstra

algorithm can be applied to choose shortest path [3].

Dijkstra algorithm is the popular way of calculating

the shortest path, especially in calculating the shortest

path from one point to all the rest points. It is the

main characteristic of Dijkstra algorithm to expand

from the beginning node which is the centre to the

outer layers until reaching the terminal node. Dijkstra

algorithm can find the best answer for solving the

shortest path problem [4]. However, if there are too

many nodes, it will not operate efficiently. Then, the

number of edges can be considered as the length of

the migration path. The elements of chess in every

layer have weight shown in Figure 3.

THANH NHAT LUONG, HOANG LIEN SON CHAU, TRI CONG PHUNG, DUY ANH NGUYEN

Proceedings of the 5
th

 World Conference on Applied Sciences, Engineering and Technology

02-04 June 2016, HCMUT, Vietnam, ISBN 13: 978-81-930222-2-1, pp 374-379

Figure 3: Weight matrix in 3D space

With:

To improve the optimizing performance of

algorithms and calculate the optimal trajectory in 3D

space, 3-layer board were created and all 192 nodes

were linked. The distance from one node to the rest

nodes on chessboard have weighted matrix as in

Figure 4.

Figure 4: The nodes in 3D space

At each step, it is not necessary to check all the

intermediate nodes, the order of process is as follow:

 Choose a node u which has smallest value d [u]

 Choose u is intermediate node to determine the

next step

The length of the path p = e1, e2... [5]

e is calculated by equation :
1

 ()
k

i

i

w p w e

Finding the shortest path from s to t is defined as

follow:

p

min (p)
P

w

 with: P is the set of all paths from s to t.

The equation below shows the idea of Dijkstra

algorithm:

 1 1
,

, , , , ,k k k
u v E

L a v min L a v min L a u w u v

With:

 k: iteration

 , kL u v : the shortest distance from u to v

after the iteration k

When there are obstacles on the way of chess piece,

the weight of that direction is infinity. Illustration of

this case is shown in Figure 5.

Figure 5: The weight when there are obstacles

With:

Simulation:

Simulation in Simulink Environment

Figure 6: SCARA robot arm in Simulink environment

Trajectory optimization for chess-playing robot arm

Proceedings of the 5
th

 World Conference on Applied Sciences, Engineering and Technology

02-04 June 2016, HCMUT, Vietnam, ISBN 13: 978-81-930222-2-1, pp 374-379

This section will conduct 3D-modeling and simulation

under an optimization trajectory by Dijkstra’s

algorithm. The simulation will verify the robot

kinematic calculations in previous section. Besides,

this progress provides an intuitive view of the

trajectory response-ability before controlling on real

model. A Simulink function was applied to import the

model to the Simulink environment (Figure 6). After

that, linear control blocks and central control blocks

were built and applied kinematic equations to

simulate. Forward and inverse kinematic equations

were presented in [1]. All kinematic link between

these blocks are shown by the Figure 7.

Figure 7: Block diagram of control system in

Simulink environment

Simulation results:

In the first case: moving the Pawn from E2 to E4, the

results are shown in Figure 8, Figure 9, Figure 10

and Figure 11.

Figure 8: Simulation trajectory of robot

Figure 9: xy plan in simulation

Figure 10: xz plan in simulation

Figure 11: yz plan in simulation

In this case, motion of the Pawn was a straight line

on layer 0 because there is no obstacle between D2

and D4. In addition, to avoid friction with

chessboard, chess piece was lifted 5mm higher than

chessboard. Total time to complete this move is

 .

The second case: moving the Knight from G1 to F3,

the results are shown in Figure 12, Figure 13, Figure

14 and Figure 15.

Figure 12: Simulation trajectory of robot

Figure 13: xy plan in simulation

Figure 14: xz plan in simulation

THANH NHAT LUONG, HOANG LIEN SON CHAU, TRI CONG PHUNG, DUY ANH NGUYEN

Proceedings of the 5
th

 World Conference on Applied Sciences, Engineering and Technology

02-04 June 2016, HCMUT, Vietnam, ISBN 13: 978-81-930222-2-1, pp 374-379

Figure 15: yz plan in simulation

In this case, there are obstacles between G1 and F3,

therefore, the Knight must conduct a jump overhead

the Pawn.

In xy plan, the reason why the Knight do not move

directly from G1 to F3 is that there are only 64 notes

(proportional to 64 chess cells), hence, it is

compulsory that the trajectory must pass over G2

position. Total time to complete this move is .

Experimental model:

Control system

The control system in Figure 16 was designed to

control three DC Servo motors. This research built a

communication program in the computer via Matlab.

The starting and ending position of the chess will be

inputted to the program. Dijkstra’s algorithm

chooses the shortest paths, then the program using

the inverse kinematic equations to get the output

parameters , encodes them into a frame

and transfer to the microcontroller via the RS232

standard.

Microcontroller

STM32F407
RS232

Motor

Driver

Proximity

Sensor

Encoder

5V

24V

Camera

AC

COMPUTER ROBOT ARM POWER SUPPLY

Figure 16: Control system diagram

The essence of completing a trajectory is motion

control problem (point to point). Trajectory will be

divided into several segments. In order to complete

an element as a line, three motors of robot need to

operate simultaneously and finish at the same time.

That work is also known as synchronous operation of

three motors.

When these analysed signals were received from the

computer, the microcontroller will generate PWM

based on the synchronization algorithm (Figure 17)

to control the three motors for completing these

displacement. Generally, pulse of each motor is

scaled according to the maximum frequency (where

the motor can perform). In other words, the more

pulse motor has, the larger frequency it will be.

K_11=1; K22=1; K33=1

K_12=pulse_1/ pulse_2

K_13=pulse_1/ pulse_3

K_21=pulse_2/ pulse_1

K_23=pulse_2/ pulse_3

K_31=pulse_3/ pulse_1

K_32=pulse_3/ pulse_2

max_pluse=MAX(pulse_1,pulse_2,pulse_3)

f_MAX=1000

i=1

i<=3
f_PWM_(i)

=f_MAX*K(i)(max_count_value)

i=i+1

PWM_1_Timer_period=840000/ f_PWM_1

PWM_2_Timer_period=840000/ f_PWM_2

PWM_3_Timer_period=840000/ f_PWM_3

Interrupt_timer_period=(84000*max_pulse)/ (f_max*42)-1

Return

Đ

S

i=1

i<=3

i=i+1

Đ

xung_(i)==max_pulse

max_count_value=i

Đ

S

PULSE PROCESSING

Figure 17: The synchronization algorithm

Experiment and results

After designing and simulating, the experimental

model in Figure 18 was built and installed with the

control system. Besides, a graphical user interface is

built by Matlab to import data, analyze and transmit

these processed signal (Figure 19).

http://vdict.co/displacement-en_vi_.html
https://www.youtube.com/watch?v=OyUYqgch-xk

Trajectory optimization for chess-playing robot arm

Proceedings of the 5
th

 World Conference on Applied Sciences, Engineering and Technology

02-04 June 2016, HCMUT, Vietnam, ISBN 13: 978-81-930222-2-1, pp 374-379

Figure 18: Experimental model

Figure 19: The main control interface

The obtained results:

To evaluate the operation of robot arm, pulse of three

encoder was responded and calculate by forward

kinematic equation. Position of end-effector will be

compared with simulation results.

For the first case: moving the Knight from cell E2 to

E4, the results are shown in Figure 20, Figure 21,

Figure 22 and Figure 23.

Figure 20: Real trajectory of robot

Figure 21: xy plan

Figure 22: xz plan

Figure 23: yz plan

The second case: moving the Knight from cell G1 to

F3, the results are shown in Figure 24, Figure 25,

Figure 26 and Figure 27.

Figure 24: Real trajectory of robot

Figure 25: xy plan

THANH NHAT LUONG, HOANG LIEN SON CHAU, TRI CONG PHUNG, DUY ANH NGUYEN

Proceedings of the 5
th

 World Conference on Applied Sciences, Engineering and Technology

02-04 June 2016, HCMUT, Vietnam, ISBN 13: 978-81-930222-2-1, pp 374-379

Figure 26: xz plan

Figure 27: yz plan

As can be seen from the figures, the real trajectory is

not stable, especially in the beginning period. The

main causes are: differences between three encoders

of motors, rounding of values when calculating

forward kinematic equation, PID controllers is not

really optimized. Besides, errors in mechanical

transmission also affect to the accuracy of the

system.

Conclusion:

The paper gives an overview of applying Dijkstra

algorithm to trajectory optimization for an automatic

chess-playing SCARA. The system was also

experimented with human opponents in real matches.

Results can be improved by increasing the quantity of

nodes on chessboard as well as the number of layer.

However, the drawback of this action is that the

calculating time will be longer.

References:

[1] N.D. Anh, L.T. Nhat, T. Van Phan Nhan (2015)

“Design and control automatic chess-playing

robot arm”, Lecture Notes in Electrical

Engineering (Vol 371), 485-496

[2] David Galva ˜o Wall, John Economou, Hugh

Goyder, K Knowles, Peter Silson and Martin

Lawrance, “Mobile robot arm trajectory

generation for operation in confined

environments”, Journal Systems and Control

Engineering (Vol 229), 215-234

[3] Zhang, J. and Wang, Y. (2008), “The

construction of the digital campus URP

system”. Journal of Beijing University of Posts

and Telecommunications (social science

edition), 72–75

[4] Yun Long Yi and Ying Guan (2012), “A Path

Planning Method to Robot Soccer Based on

Dijkstra Algorithm”. Advances in Electronic

Commerce, Web Application and

Communication (Vol 2), 89-95

[5] T.V. Hoai, “Shortest path”, lecture in “Discrete

mathematics”, Master course (2009-2010).

[6] Marco Ulricha, Gregor Lux, Leila Jurgensen,

Gunther Reinhart, “Automated and Cycle Time

Optimized Path Planning for Robot-Based

Inspection Systems”, 6th CIRP Conference on

Assembly Technologies and Systems, 377-382.

