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Abstract: Tranminsion clusters of engine are always the culprit causing oscillation and noise while the car is 

moving. This component is integrated to the frame of the car by rubber-metal bearing. The oscillation of 

tranminsion clusters depends on the force generated when the engine is running and the force stimulated from 

the frame when the car is moving. The article is an presentation of a method to reduce the oscillation caused by 

the main tranminsion cluster by searching for the optimization parameters of the harness of the engine bearing. 

The exploration of  the optimization parameter of the hardness of the tranminsion cluster bearing is based on 

building and selection oscillation model, solving differential equations and optimizing the outputs by using 

Gomory’s graph. 
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Introduction: 

The computational model construction: 

The engine is integrated to the frame of the car by 

rubber-metal bearing. We can builddynamic model of 

engine vibrations on the pillow elastic suspension as 

Figure 1. This model reflects that the engine has 

six degrees of freedom in which three degrees of 

freedom allow the engine  relatively shift under the 

shaft ox(X), oy(Y), oz(Z), 3 degrees of 

freedom allow the motor spin deflection around the 

shaft ox(), oy(),oz(). 

 

 
Figure 1: Dynamic model of engine vibrations 

 

When working the engine suffers the major external 

effects of inertia forces of the moving structure and 

torque generated at the crankshaft. The vector sum of 

inertia forces acting on the engine body has the force 

placement location deviant to the heart of a dynamic 

cluster  at a distance, therefore the main oscillation of 

the engine cluster is the vertical axis transposition 

oscillation (Oz) and the pendulum oscillation on the 

horizontal axis of the motor (Ox).  

 

Thus in the calculation of the article, when building 

computational models, the authors have bypassed 

vertical axis pendulum oscillations of the motor (Oy), 

vertical axis pendulum (Oz) and transposition of the 

Ox and Oy axis. Computational model (Figure 2) is 

refered as  a flat model, meaning that the engine has 

one front bearing and two rear bearings that have 

hardness value equivalent the value of one bearing. 

 

 

 
Figure 2: Oscillation model of cluster engine 

 

 

Oscillating differential equation of the cluster engine 

is expressed as follows: 
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In which: 

cmd  – The volume of cluster engine  

dcz
– Transposition of front wheel, rear wheel and 

vehicle body 
1

dcC
, 

2

dcC
, 

1

dck
, 

2

dck
 – Coefficient value and 

hardness coefficient value of front bearing and rear 

bearing 

dcJ
– Inertia moment at centre of gravity of vehicle 

body 

P – General force acting on the engine body 

a, b – The distance from the bearing to the center of 

gravity of the engine 

c – The distance between the location 

of general force and coordinates the center of 

gravity of the engine 

 

2. Construction method of solving system of 

differential equations  

 

System of oscillating differential equation of the 

cluster engine and vehicle body has presented 

above can be written as: 

( )t  
i i i

Mx Kx Cx Q
, 

(3.1) 

In which: 

 ix
 – Transpose column vector 

 

 М – Mass matrix 

 

 С – Hardness coefficient matrix 

 

 K – Coefficient of absorber matrix 

 

 Q(t) – External forces acting column vector 

 

As we know, to solve system of 

oscillating differential equation, 

which has linear components, We use 

the Laplace transform  as follows: 

 

(3.2) 

   
2
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In which:  

( ω)jW
 – Frequency function (

1j  
), 

G – External forces acting column vector 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Calculation diagram of system of oscillating differential equation 

 

Spectral density value vibrational transposition is 

calculated according to the formula: 
2

z z q(ω) ( ω) (ω)S W j S  , (3.3) 

In which: q (ω)S
 – Spectral density linear 

deformation 

Spectral density value vibrational acceleration is 

calculated according to the formula: 

Sq() 

Sq1(), Sq2() … 

2 2

z z( ω) ;   ( ω)W j W j  z z(ω);   (ω)S S  
скz  

engine 

P∑(t) 
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z z q z q(ω) (ω) (ω) ω (ω) (ω)S W S W S   

, 

(3.4

) 

The average squared values of 

vibrational acceleration: 

ск z (ω) ωz S d





  , (3.5) 

3. Computational results: 

The MATLAB software is used to find out the value 

of the frequency density spectrum, the average 

squared vibrational acceleration of engine cluster 

focus. 

The results of the calculation of frequency density 

spectrum vibrational transposition and acceleration, 

expressed in the Figure 4, Figure 5, Figure 6 and 

Figure 7. 

The results of the calculation of average squared 

transposition and acceleration , expressed in the 

Figure 8, Figure 9, Figure 10 and Figure 11. 

 

 

 
Figure 4. Frequency density spectrum vibrational 

transposition at the location of the front bearing 

 

 
Figure 5. Frequency density spectrum vibrational 

acceleration at the location of the front bearing 

 

 
Figure 6. Frequency density spectrum vibrational 

transposition at the location of the rear bearing 

 

 
Figure 7. Frequency density spectrum vibrational 

acceleration at the location of the rear bearing 

 

 
Figure 8. Average squared vibrational transposition 

at the location of the front bearing in  different 

speeds 
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Figure 9. Average squared vibrational acceleration 

at the location of the front bearing in  different 

speeds 

 
Figure 10. Average squared vibrational transposition 

at the location of the rear bearing in  different speeds 

 

 
Figure 11. Average squared vibrational acceleration 

at the location of the rear bearing in  different speeds 

 
 4. Optimum bearing parameters by the graphical 

method 

With the results of calculation of average squared 

vibrational transposition and acceleration at the 

location of the front and rear bearing according to the 

values of different speeds, we take the average and 

draw the graph of the average squared vibrational 

transposition and acceleration according to the 

stiffness of the front and rear bearing as follows: 

 
Figure 12. Average squared vibrational transposition 

at the location of the front bearing in  different 

stiffness 

 
Figure 13. Average squared vibrational acceleration 

at the location of the front bearing in  different 

stiffness 

 

 
Figure 14. Average squared vibrational transposition 

at the location of the rear bearing in  different 

stiffness 
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Figure 15. Average squared vibrational acceleration 

at the location of the rear bearing in  different 

stiffness 

The method to approximate a function is used to find 

out the approximate quartic function which expresses 

values of vibrational transposition and acceleration at 

the location of the front and rear bearing, depends on 

the different stiffness. 

From the results of function which is obtained, we 

use the method of drawing stacked graph, obtained 

the results as on Figure 16 and 17 

 
Figure 16. Stacked graph of average squared 

vibrational transposition and acceleration at the 

location of the front bearing 

 
Figure 17. Stacked graph of average squared 

vibrational transposition and acceleration at the 

location of the rear bearing 

 

Based on the function on the graph of Figure 16 and 

Figure 17, we find 

- Optimal stiffness values of the front bearing in this 

case is: 128,405 N/m 

- Optimal stiffness values of the rear bearing in this 

case is: 115,490 N/m 

 

5. Conclusion: 

1) The articles presents vibrational models and 

computational methods for clusters of engine, in 

which the results have shown the vibrational 

frequency spectral density and the average squared 

values of vibrational transposition and acceleration; 

2) The article presents the graphical method to 

determine optimal stiffness values of of the front and 

rear bearing correctly; 

3) Calculating the optimum bearing parameters by 

the graphical method above can be applied to solve 

similar optimization, for example: bearing of the type 

of motivation, bearing of the oscillating weight, 

stiffness of linear suspension cars ... 
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