

5
th

 World Conference on

Applied Sciences, Engineering & Technology

02-04 June 2016, HCMUT, Vietnam

WCSET 2016041 Copyright © 2016 BASHA RESEARCH CENTRE. All rights reserved

An Experimental Study on Identifying Obfuscation Techniques in Packer

NGUYễN MINH HảI, QUảN THÀNH THƠ
Department of Software Engineering, HCM city University of Technology, Ho Chi Minh City, VietNam

Email: nguyenmhai1984@gmail.com, qttho@cse.hcmut.edu.vn

Abstract: Malware is one of the most important problems in computer security. There are two main approaches

for detecting malware, signature matching and virtual emulation. Signature is a typical bit pattern, which

characterizes malwares. Most of industrial malware detection methods depend on regular expression based

signature recognition. Virtual emulation prepares a sandbox to explore behaviour of malwares, which requires a

deep encoding of system environments to emulate windows APIs [1]. However, emulation requires finding a

suitable abstraction level which is very heavy task. Moreover, these techniques are easily defeated by the

obfuscation techniques, e.g. indirect jump, self-modifying code, Structured Exception Handling (SEH) and

many other techniques which are adopted in packer. In fact, most of modern malware use packers for creating a

new variant which cheats the antivirus software, According to a report of Semantic Lab [2], nearly 80% of

malware are packed by packer. This paper targets on the problem of identifying the obfuscation techniques

which are adopted in some well-known packers. It proposes an experimental study of obfuscation techniques

which are used in 7 popular packers which include UPX, FSG, NPACK, ASPACK, PECOMPAT, PETITE, and

YODA. We develop our pushdown model generation of malware, BE-PUM as a generic unpacker tool by

implementing the anti-anti-analysis techniques against the obfuscation techniques in these packers. During the

on-the-fly disassembly, BE-PUM observes and measure the frequency of obfuscation techniques adopted in

packers. We have performed the experiments in 8 packers using BE-PUM and achieved very promising results.

Keywords: Concolic Testing, Pushdown System, Malware Detection, Binary Code Analysis, Self-Modifying

Code, Packer Identification, Obfuscation Technique

Introduction:

Most of the modern popular malwares are packed by

a packer. Packer mutates a malware into another

executable to evade the signature based technique of

anti-virus softwares. For solving this problem, most

of anti-virus software focuses on identifying packer

based on the packer signature, a binary pattern

specific to each packer. However, since malware can

obfuscate the packer signature, this approach is easily

defeated when dealing with real-world malware.

There is a considerable binary analysis tools, e.g.

JakStab [3][4][5], Syman [6] and BINCOA [7].

However, they are quite limited when dealing with

packers. In [8][9] we have proposed a tool BE-PUM

(Binary Emulator for Pushdown Model generation),

for generating a precise control flow graph (CFG).

BE-PUM can handle many typical obfuscation

techniques of malware, e.g., indirect jump, self-

modification, overlapping instructions, structured

exception handler (SEH) and many techniques which

are covered in packers.

In this paper, we introduce an experimental study on

identifying obfuscation techniques in 2000 real-world

malware. We have developed BE-PUM as a generic

unpacker tool by implementing the anti-anti-analysis

techniques against the obfuscation techniques in

these packers. During the process of model

generation, BE-PUM can observe and measure the

frequency of obfuscation techniques adopted in 7

packers which include UPX, FSG, NPACK,

ASPACK, PECOMPAT, PETITE, and YODA.

We have performed the experiments in 2000 real-

world malware belonged to these packers for

checking the effectiveness of our approach.

The rest of this paper is organized as followed.

Section “Materials and Methods” briefly describes

the obfuscation techniques and the methods for

detecting them. Section “Results and Discussions”

shows our experiments on 2000 malwares taken from

VirusTotal. The final section is the conclusion of our

paper.

Materials and Methods:

Inspired by [10], the obfuscation techniques in packer

are categorized into 6 groups including Entry/Code

placing obfuscation, Self-modification code,

Instruction obfuscation, Anti-tracing, Arithmetic

operation and Tamper detection. The first group

includes 5 main techniques, Dynamic Code, Code

Layout, Overlapping functions, Code Chunking and

Anti Rewriting. The second one composes of 3 main

techniques, Dynamic Code, Code Overwriting and

Overlapping Blocks. The third group includes the

Indirect Jump technique. The fourth group includes

techniques of SEH and special APIs. The fifth group

includes 2 techniques, Obfuscated Constants and

Checksumming. And the final group includes

Checksumming, Timing Check and Anti-Debugging.

The table 1 briefly describes the techniques which are

supported in each packer.

NGUYỄN MINH HẢI, QUẢN THÀNH THƠ

Proceedings of the 5
th

 World Conference on Applied Sciences, Engineering and Technology

02-04 June 2016, HCMUT, Vietnam, ISBN 13: 978-81-930222-2-1, pp 201-205

Table 1: Supported techniques in packer

Name

U
P
X

AS
PA
CK

F
S
G

NP
AC
K

PECO
MPA

CT

PE
TI
TE

Y
O
D
A

Packing-

Unpackin

g

x x x x x x x

Overwriti

ng
x x x x x x x

Indirect

Jump
x x x x x x x

Obfuscat

ed

Constant

s

x x x x x x x

Code

Chunkin

g

 x x x x x

Stolen

Bytes
 x x x

Checksu

mming
x x x x x x x

SEH x x

2API x x x x x

Anti-

Debuggi

ng

 x

Dynamic

Code
x x x x x x x

Code

Layout
x x x x x x x

Overlapp

ing

Function

 x x x x x x

Overlapp

ing

Blocks

x x x x x x x

Anti-

Rewritin

g

x x x x x x x

Timing

Check

Entry/Code Placing Obfuscation

a. Dynamic Code

Dynamic code technique is used in packer in two

forms including overwriting and packing/unpacking.

 Overwriting

This technique is also called self-modifying code

(SMC). Packer exploits SMC to modify binary which

is dynamically loaded onto memory. Using this

feature, packer evades the technique of signature

matching which many anti-virus softwares base on

for verifying malwares. Since BE-PUM supports on-

the-fly model generation with the capability of

capturing the modification of binary code in dynamic

way, it can easily detect this technique. Moreover,

BE-PUM also implements the procedure to locate the

position of memory value for verifying whether it is

in code section or not. The code below describes the

overwriting technique in YODA packer.

4050D3 STOS BYTE PTR ES:[EDI]

4050D6 CMP ECX , EBP

Listing 1: Overwriting in YODA

 Packing/Unpacking

This technique is also called Encryption/Decryption.

It uses the same idea of SMC technique with the

appearance of loop. It can be easily recognized in

BE-PUM. The code below describes the

packing/unpacking technique in YODA packer.

405067 CALL 40506C

40506C POP EBP

40506D SUB EBP, 40286C

405073 MOV ECX, 40345D

. . .

405092 LODS BYTE PTR DS : [EDI]

405093 ROR AL, 0DB

. . .

4050C3 STOS BYTE PTR ES : [EDI]

4050C4 LOOPD 405092

Listing 2: Packing/Unpacking in YODA

b. Code Layout

The code layout technique is presented in packer in

three ways, overlapping functions, overlapping

blocks and code chunking.

 Overlapping Functions

The main idea of this technique is to interleave code

between functions. Each function is placed between

CALL and RET instruction. Using this feature, on

encountering each newly-discovered function, BE-

PUM checks whether it overlaps with others.

 Overlapping Blocks

This technique uses the same idea with overlapping

function. Each block is delimited by the appearance

of jump instruction. BE-PUM records these blocks

and verifies its location for interleaving. The code

below describes the overlapping block features in

Yoda.

40509D DEC AL

40509F ADD AL, CL

. . .

4050C2 CLC

4050C3 STOS BYTE PTR ES:[EDI]

. . .

4050BD JMP 4050C0

An Experimental Study on Identifying Obfuscation Techniques in Packer

Proceedings of the 5
th

 World Conference on Applied Sciences, Engineering and Technology

02-04 June 2016, HCMUT, Vietnam, ISBN 13: 978-81-930222-2-1, pp 201-205

Listing 3: Overlapping block in YODA

 Code Chunking

This technique splits code blocks in many groups of

small instructions ending with a jump instruction.

BE-PUM detects this technique by checking whether

packer uses many jump instructions. The distance of

these instructions is less than or equals the threshold

which is about 20 bytes. This threshold is determined

on many observations and testing.

40546B JMP 40546E

. . .

40546E STC

. . .

405477 JMP 40547A

. . .

40547A JMP 40547D

. . .

40547D NOP

Listing 4: Code chunking in YODA

c. Anti-Rewriting

 Stolen Bytes

This technique allocates a buffer by calling Windows

API VirtualAlloc and copies unpacked code into this

buffer instead of overwriting the original one. BE-

PUM detects this technique by recognizing the

occurrence of this special API.

405899 PUSH EDX

40589A MOV EBP, EAX

40589C PUSH 40

40589E PUSH 1000

4058A3 PUSH DWORD PTR DS:[EBX+4]

. . .

4058AF CALL kernel32.VirtualAlloc

Listing 5: Stolen bytes in PECOMPACT

 Checksumming

This technique can be detected in BE-PUM by

recognizing 2 stages. In the first stage, there is a loop

which calculates the total checksum value. This loop

does not modify the memory value in code section.

Otherwise this technique will be captured as

packing/unpacking technique. In the second stage,

BE-PUM detects the occurrence of comparison

instruction which compares checksum with memory

value.

4057F5 XOR EAX, EAX

4057F7 LODS BYTE PTR DS:[EDI]

4057F8 XOR AL , DL

4057FA SHR EAX, 1

405806 INC ECX

405C51 PUSH EAX

405C52 XOR EAX , 7DCC805B

405C57 SUB EAX , 2A5DA2BD

405C63 JNZ 40527B

Listing 6: Checksumming in TELOCK

Self-Modification

This technique can be divided into Dynamic Code,

Code Overwriting, and Overlapping Block. These

techniques are described in the above part.

Instruction Obfuscation

This technique is also called Indirect Jump

techniques. It stores the target of jump instruction in

a register, memory or stack frame. For detecting

indirect call, BE-PUM verifies whether the target of

CALL instruction is located in a register or memory.

For checking indirect jump, BE-PUM applies the

same way. With the indirect return, BE-PUM first

records the top stack value when it jumps into a

function. On encountering RET instruction, BE-PUM

pops the top stack for comparing with the recorded

value. If these values are not equal, BE-PUM

captures this technique as indirect return.

4053FA CALL DWORD PTR DS:[ESI+503C]

Listing 7: Indirect call in UPX

Anti-Tracing

a. Structured Exception Handling (SEH)

BE-PUM detects this technique in two stages. The

first stage setups the exception by storing the value of

exception address in the FS:[0]. The second stage

triggers the exception by diving by zero, memory

violation of read or write instruction, or causing

interrupt.

405116 PUSH 4022E3

40511B PUSH DWORD PTR FS:[0]

405122 MOV DWORD PTR FS:[0] , ESP

40521E MOV BYTE PTR DS:[EDI] , AL

Listing 8: SEH in PETITE

b. Two Special APIs

Packers use the two APIs, LoadLibrary and

GetProcAddress for getting the necessary dynamic

link library. BE-PUM detects this technique by

recognizing these two special APIs.

4001C5 PUSH EAX

4001C6 CALL kernel32.Load Library

4001D4 PUSH EAX

4001D5 PUSH EBP

4001D6 CALL kernel32.GetProcAddress

Listing 9: Using two special APIs in FSG

Arithmetic Operation

This technique composes of Obfuscated Constants

and Checksumming. Checksumming technique is

described above.

a. Obfuscated Constants

The main idea of obfuscated constant is to replace the

constant value with arithmetic instructions which

produces the same results. BE-PUM detects this

technique by checking whether there are arithmetic

instructions with all of operands which are concrete

value (not symbolic value).

405C51 PUSH EAX

405C52 XOR EAX, 7DCC805B

405C57 SUB EAX, 2A5DA2BD

Listing 10: Obfuscated constant in PETITE

NGUYỄN MINH HẢI, QUẢN THÀNH THƠ

Proceedings of the 5
th

 World Conference on Applied Sciences, Engineering and Technology

02-04 June 2016, HCMUT, Vietnam, ISBN 13: 978-81-930222-2-1, pp 201-205

Tamper Detection

This technique also includes Checksumming

technique as we explained above. Moreover, this

technique composes of two other techniques,

including timing check and anti-debugging.

a. Timing Check

BE-PUM detects this technique by recognizing the

special APIs relating to time of system, e.g.

GetTickCount, GetSystemTime, GetLocalTime, etc. or

special instruction e.g. RDTSC.

b. Anti-Debugging:

This technique can be detected by recognizing

special APIs which packer exploits for verifying its

running environment, e.g. IsDebuggerPresent,

CheckRemoteDebuggerPresen, NtQueryInformation

Process, NtQuerySystemInformation and

NtQueryObject, etc.

405888 CALL kernel32.IsDebuggerPresent

Listing 11: Anti-debugging in YODA

c. Hardware Breakpoints

Hardware Breakpoints is exploited via usage of the

debug registers. By triggering an interrupt exception

with INT3 instruction, packer jumps to a special

procedure which modifies the special value of debug

registers DR0, DR1, DR2 and DR3. These registers

store the values of location where TELOCK plans to

cause an exception by interrupting. When the control

flow is transferred to the locations stored in debug

registers, it will be set as hardware breakpoint and

causes an SINGLE STEP EXPCEPTION.

40508C INT3

40508D NOP

40508E MOV EAX, EAX

405090 STC

405099 CLC

40509E CLD

4050A3 NOP

Listing 13: Hardware breakpoints in TELOCK

Packer will cause an exception at location 40508C,

then it will setup for debug registers by modifying

the values of DR0 at location 405090, DR1 at

location 405099, DR2 at location 40509E, and DR3

at location 4050A3. When the control flow jumps to

this location, Telock moves to special routine for

setting up a special value in memory for later

packing/unpacking routine. Since BE-PUM supports

8 debug registers, it can easily detect this technique.

Results and Discussion:

In this section, we present our experiments of

obfuscation technique detection and packer

identification on 2000 real-world malware, taken

from VirusTotal. Our experiments are performed on

Windows XP with AMD Athlon I I X4 635, 2.9 GHz

and 8GB. Among 2000 malware, BE-PUM has

detected the techniques of Packing/Unpacking,

Overwriting, Indirect Jump, Obfuscated Constants,

Co de Chunking, Stolen Bytes, Checksumming, SEH,

2API, Anti-Debugging, Dynamic Code, Code

Layout, Overlapping Function, Overlapping Blocks,

Anti-Rewriting and Timing Check in 617, 1502,

1460, 1761, 965, 183, 1392, 709, 140, 8, 1502, 1460,

1225, 1430, 1399 and 234 malwares respectively.

Table 2 below summarizes our result of detecting

techniques in BE-PUM

Table 2: Result of technique detection

Name Number of Malwares

Packing/Unpacking 617

Overwriting 1502

Indirect Jump 1460

Obfuscated Constants 1761

Code Chunking 965

Stolen Bytes 183

Checksumming 1392

SEH 709

2API 164

Anti-Debugging 8

Dynamic Code 1502

Code Layout 1460

Overlapping Function 1225

Overlapping Blocks 1430

Anti-Rewriting 1399

Timing Check 234

An Experimental Study on Identifying Obfuscation Techniques in Packer

Proceedings of the 5
th

 World Conference on Applied Sciences, Engineering and Technology

02-04 June 2016, HCMUT, Vietnam, ISBN 13: 978-81-930222-2-1, pp 201-205

Figure 1 describes the correlation between the

number of malwares and the number of techniques

which are detected in them.

Conclusion:

This paper proposes an experimental study on

detecting obfuscation techniques during disassembly.

The method is implemented as BE-PUM (Binary

Emulator for PUshdown Model generation).

Experiments and observation confirm that BE-PUM

correctly handles obfuscation techniques of 7

packers.

References:

[1] A. Mori, T. Izumida, T. Sawada, and T. Inoue.

A tool for analyzing and detecting malicious

mobile code. In ICSE, pages 831–834, 2006.

LNCS 3233

[2] Anti-virus technology whitepaper. Technical

report, BitDefender, 2007.

[3] J. Kinder and D. Kravchenko. Alternating

control flow reconstruction. In VMCAI, pages

267–282, 2012. LNCS 7148.

[4] J. Kinder, F. Zuleger, and H. Veith. An abstract

interpretation-based framework for control flow

reconstruction from binaries. In VMCAI, pages

214–228, 2009. LNCS 5403

[5] Johannes Kinder. Static Analysis of x86

Executables. PhD thesis, Technische

Universitat Darmstadt, 2010.

[6] S. Bardin, P. Herrmann, J. Leroux, O. Ly, R.

Tabary, and A. Vincent. The BINCOA

framework for binary code analysis. In CAV,

pages 165–170, 2011. LNCS 6806.

[7] T.Izumida, K.Futatsugi, and A.Mori. A generic

binary analysis method for malware. In

International Workshop on Security, pages

199–216, 2010. LNCS 6434.

[8] M. H. Nguyen, T. B. Nguyen, T. T. Quan, and

M. Ogawa. A hybrid approach for control flow

graph construction from binary code. In IEEE

APSEC, pages 159–164, 2013.

[9] M. H. Nguyen, M. Ogawa, and T. T. Quan and.

Obfuscation code localization based on cfg

generation of malware. In FPS, to appear in

LNCS, 2015.

[10] K.A. Roundy and B.P. Miller. Binary-code

obfuscations in prevalent packer tools.

In ACM Comput. Surv, 46, pages 4:1–4:32,

2013.

Figure 1: Result of correlation detection

