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Abstract: The accuracy of a FEM solution depends upon how well the structure is discretized, whereas Mesh 

free method works on the nodes and their domains to arrive at the solution without discretization of the 

structure. An attempt has been made to develop a purely mesh less method. An example has been illustrated to 

demonstrate the potential application of the same. No background mesh is employed in this process even for 

nodal integration. Complexity involved with the numerical integration using Gaussian quadrature is completely 

ruled out. MLS procedure is deployed to arrive at the shape functions. Penalty approach is used to enforce the 

boundary condition. An algorithm based on MATLAB coding is developed to obtain displacement profile along 

the length of the 2-D cantilever loaded with a point load at free end. The result obtained shows good agreement 

with the analytical solution and FEM solution. 
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Introduction: 

All the physical phenomena encountered in 

engineering are modelled by differential equations. To 

solve the Differential Equations (DE), two major 

approaches are followed. They are: 

i. Analytical and 

ii. Numerical. 

Analytical approach leads to closed-form solutions 

and is effective in case of simple geometry, boundary 

conditions, loadings and material properties. For most 

of practical problems where it is not possible to get 

exact analytical solution, Numerical solutions are 

being called for. Strong form method discretizes and 

solves the governing DE directly. In weak form 

method instead of solving DE of the underlying 

problem directly, an integral function that governs the 

same physical phenomena is solved. Weakened weak 

form reduces the order of DE with respect to weak 

form and then solves it. The various numerical 

methods available are: FDM, BEM, FVM, FEM, X-

FEM, Mesh Free Method. 

This work is a preliminary attempt to understand and 

find out the applicability of purely meshless method 

for the problem in hand. 
 

Mesh-Free Method: 

1 Why Mesh-Free Methods? 

Though FEM is a robust and thoroughly developed 

method, and widely used in engineering fields due to 

its versatility for complex geometry and flexibility for 

many types of linear and non-linear problems and also 

most practical engineering problems are currently 

solved using well developed FEM packages, it has lots 

of drawbacks. The following limitations of FEM are 

becoming increasingly evident: 

 FEM rely on meshes or elements that are connected 

together by nodes in a properly predefined manner 

and creation of a quality mesh requires more man 

power than the computational efforts. 

 The compatible FEM model is usually overly stiff 

and only provides a lower bound solution. 

 Limitations in the analyses of some problems: It is 

difficult to simulate crack growth and breakage of 

materials in FEM. Under large deformations, due to 

element distortion FEM results will not be accurate. 

 FDM works well only for regularly distributed 

nodes. Studies are still going on to develop methods 

using irregular grids.  

 It is difficult in using X-FEM when we are dealing 

with complete fragmentation of the structure. 

 And also we can’t increase the order of polynomial 

in FEM (unless re-meshing is done) or in X-FEM to 

increase the accuracy in the result since it is based 

on element. Whereas in MFM we can increase the 

order of polynomial since it is based on nodes.  

The root of these problems is the use of elements or 

mesh in the formulation stage. The idea of getting rid 

of the elements and meshes in the process of 

numerical treatments has naturally evolved, and the 

concepts of mesh free or mesh less methods have been 

shaped up. To overcome all this shortcomings a new 

method was proposed which even don’t require mesh 

at all, which is named as element-free / mesh-less / 

mesh-free method. 
 

2 Definitions: 

It is a method used to establish a system of algebraic 

equations for the whole problem domain without the 

use of a predefined mesh or uses easily generable 

meshes in a much more flexible or freer manner. It 

uses a set of field nodes scattered within the problem 

domain as well on the boundaries of domain to 

represent the problem and its boundaries. 
 

Mesh-Free techniques can be conveniently used in the 

problems of solid mechanics like stress concentration 

and crack growths, wherein more number of nodes 

have to be introduced near the regions of stress 

concentrations and at the cracks. It is also well suited 

for problems on large deformations and 

discontinuities. Ideally Mesh-Free method should not 

use any mesh but the Mesh-Free methods developed 

so far are not entirely mesh-free but it requires 
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background cells for the integration of system 

matrices.  
 

 
Figure 1: Distribution of nodes in domain by MFM 

(Liu.R.G, 2005) 
 

There are a number of mesh-free methods that use 

local nodes for field variable approximation, such as 

 Smooth Particle Hydrodynamics (SPH), 

 Diffuse Element Method (DEM), 

 Element Free Galerkin method(EFG), 

 Mesh-less Local Petrov–Galerkin (MLPG) 

method, 

 Reproducing Kernel Particle Method(RKPM), 

 Point Interpolation Method (PIM), 

 Finite Point Method(FPM), 

 FDM with arbitrary irregular grid, 

 Local Point Collocation methods. 
 

Apart from these methods, the developments of 

“merging” or “fusing” different methods (even with 

FDM, FEM) are very important in inventing more 

effective computational methods for more complicated 

engineering problems. 
 

3 Procedure of MFM: 

The procedure of Mesh Free method is briefed step by 

step in the following flow chart, 
 

 
Figure 2: Flow chart comparison of procedures of FEM & 

MFM (Liu.R.G, 2005). 
 

4 Moving Least Squares Shape Functions 

The shape function is the function which interpolates 

the solution between the discrete values obtained at 

the mesh nodes. In simple words, it tells about the 

variation of deflection between the nodes. It doesn’t 

satisfy the Kronecker's delta property (as in FEM) in 

Mesh free method. 
 

Kronecker's delta property (preferable condition): 

δij = 0 if i≠j, 

δij = 1 if i=j. 

Partition of unity (compulsory condition): 

Total summation of all shape functions “φ” at any 

node is always equal to 1 

   
 
   (x) = 1 

The value of shape function will vanish outside the 

support domain. 
 

The shape function construction is formulated in this 

work by the use of MLS technique. 

The moving least squares (MLS) approximation was 

devised by mathematicians in data fitting and surface 

construction (Lancaster and Salkausdas 1981; 

Cleveland 1993). It can be categorized as a method of 

series representation of functions. The MLS 

approximation is now widely used in Mesh Free 

methods for constructing Mesh Free shape functions. 

Formulation: 

Shape function or interpolation of field variables 

decides the accuracy of the results. u(x, y) is the 

function of field variable defined in the domain. If the 

approximation of u(x, y) at a point is given as uh(x, y), 

then the MLS approximation can written as, 

u
h
(x) =             

  = p
T
(x) a(x) 

Where p(x,y) is the basis function of the spatial 

coordinates, and m is the number of the basis 

functions. The basis function p(x,y) is often built using 

monomials from the Pascal triangle to ensure 

minimum completeness.  

a(x) is the vector of coefficients given by 

a
T
(x) = { a0(x) a1(x) ….. am(x)} which are functions of 

x. The coefficients a can be obtained by minimizing 

the following weighted residual function. 

J =            
              

   
  

J =            
             

   
  

where, 

          is a weight function, chosen so that to 

have the following properties. 

        > 0 within the support domain. 

         = 0 outside the support domain. 

         Monotonically decreases from point of 

interest x. 

         is sufficient, smooth , especially on the 

boundary. 

Weight functions play an important role in mesh-free 

methods. They should be constructed according to the 

reproducibility requirement. Most mesh-free weight 

functions are bell shaped. 

The various weight functions are, 

 The cubic spline function  

 The quartic spline function 

 The exponential function 

The major requirement for an efficient weight function 

are listed below, 

i. Unity condition states that the weight function 

is one at the centre of the support domain (ri = 

0) 

W(ri = 0) = 1 
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ii. Compact support condition states that 1
st
 and 

2
nd

 derivatives of the weight function are all 

zero at the boundary of the support domain (ri = 

1). This compact support condition leads to the 

following set of equations. 

W(ri = 1) = 0 

                   

                     

iii. The condition of symmetry states that the 1
st
 

derivative of the weight function is zero at the 

centre of the support domain (ri = 0). The 

condition of symmetry gives the following 

equation. 

                   

Based on these criteria the exponential weight function 

is chosen out of the above mentioned weight 

functions. 

The exponential weight function is expressed as, 

Wi(x) =  
                        
                            

  

where,  

α=0.3 (based on literatures) 

ri = di / rw 

di -  distance between point of interest and the node 

considered. 

rw - size of the support domain. 

n - number of nodes in the support domain of x for 

which the weight function          ≠ 0 and ui is the 

nodal parameter of u at x=xi is a functional, a 

weighted residual, that is constructed using the 

approximated values and the nodal parameters of the 

unknown field function.  

The stationary of J with respect to a(x) gives 
  

  
   

which leads to, 

Φ
T
(x) = { Φ1(x), Φ2(x),….., Φn(x)} (1 *n) 

Φ
T
(x) = p

T
 (x) * A

-1
 (x) * B (x) 

where, 

Φ(x)  - shape function matrix 

A(x) =             
     

 
    

B(x) =            
 
    

p(xi) = [ 1; xi; yi; xiyi]  
 

 

5 Enforcement of Boundary condition 

Imposing essential boundary conditions is a key issue 

in mesh-free methods. The Mesh-free interpolation 

does not verify the Kronecker delta property and, 

therefore, the imposition of prescribed values is not as 

straightforward as in the finite element method. To 

enforce the boundary condition at the boundary nodes 

in Mesh-Free method, two methods are followed 

widely. They are  

i. Lagrange Multiplier method and  

ii. Penalty method. 

 

In the present study, penalty method is used to enforce 

essential boundary conditions. The salient features of 

this method are briefed bellow. 
 

5.1 Penalty method 

The penalty method is more convenient method for 

enforcing the essential boundary conditions, due to the 

advantage that there are only two changes of matrices 

and the algorithm is very simple. The procedure of 

penalty method is explained below. 

Based on the practice in FEM, the penalty coefficient 

‘α’ can be determined as, 

α = 10
4
 ~ 10

8
 (K)max 

where, 

α  - penalty coefficient. 

(K)max -  maximum diagonal element of the global 

stiffness matrix. 

Using α, nodal penalty stiffness matrix (K
α

IJ) and 

nodal penalty force vector (F
α

J) are formulated as 

shown below, 

K
α

IJ =    
        

F
α

J =    
        

 

where, 

K
α

IJ – nodal penalty stiffness matrix, 

    ,     – Shape function matrices for boundary nodes 

considered. 

F
α

J - nodal penalty force vector. 

The integrations in the penalty stiffness matrix and the 

penalty force vector is done and they are assembled to 

form the global penalty stiffness matrix (K
α
)and global 

penalty force vector (F
α
). The integration is performed 

along the essential boundary (Г), and hence matrix K
α
 

will have entries only for the nodes near the essential 

boundaries Гu. 

Substituting the foregoing expression for all the 

displacement components of u in the general  

Equation, yields the following global discretized 

system equations of the EFG method. 

[K + K
α
] U = F + F

α
 

where, 

U - vector of nodal parameters of displacements for all 

nodes in the entire problem domain,  

K - global stiffness matrix assembled using the nodal 

stiffness matrices, and  

F - global external force vector assembled using the 

nodal force vectors, 
 

As the boundary conditions are enforced, The 

Galerkin procedure makes the stiffness matrices K and 

K
α
 symmetric. If the problem domain is sufficiently 

supported without rigid body movement, [K + K
α
] will 

be positive definite; now it is possible to invert the 

stiffness matrix as it becomes non-singular positive 

definite matrix. A standard linear algebra equation 

solver can be used to solve Equation for the nodal 

displacement parameters. 
 

The advantage of using the penalty method is that the 

dimension, symmetry and positive definite properties 

of the stiffness matrix are achieved, as long as the 

penalty factors chosen are positive. In addition, the 

symmetry and the bandness of the system matrix are 

preserved. 
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However, the penalty method has the following 

shortcomings. 

 The penalty method can only approximately satisfy 

the essential boundary conditions. depending on the 

magnitude of the penalty coefficients. (larger the 

penalty coefficients, the more accurate the 

enforcement of the essential boundary conditions) 

 It is difficult to choose a set of penalty factors that 

are universally applicable for all kinds of problems. 

One hopes to use large possible penalty factors, but 

too large penalty factors often give numerical 

problems, as we experienced in the imposition of 

multi-point boundary condition in the finite element 

methods. Trials may be needed to choose a proper 

penalty factor. 

 The results obtained are generally less accurate than 

those obtained from the method of Lagrange 

multipliers method. 

Despite these disadvantages, the penalty method is 

widely used because of its low computational cost and 

quick convergence of solution than Lagrange 

multiplier. 
 

Literature Review: 

 On comparing with FEM, even though Mesh-free 

Method has some disadvantage like 

computationally expensive and difficulty in 

introducing the boundary conditions, it gives more 

accurate, reliable and stable results than FEM even 

for typical geometry like corrugated plates and for 

elasto-plastic analysis of plates. 

 Mesh-free is more effective in high stress gradient 

problems like crack initiation and growth problems 

and its accurate determination of SIF compared to 

other methods is better even when the nodes are 

distributed unevenly. 

 EFG method can be made as a truly mesh-less 

method by the use of Nodal direct integration 

scheme. Though it helps to avoid shear locking and 

very accurate, it has a disadvantage of very high 

computational cost and problem of mathematical 

instability. 

 Coupling of MFM and FEM has the problem in the 

interface layer of cracks where the shape functions 

generated by both EFGM and FEM must be 

compatible. 

 There is still ambiguity in deciding the size of 

influence domain of the node. 

 There is a huge complexity involved in usage of 

Gaussian quadrature technique in numerical 

integration and also some instability issues 

involved in direct nodal integration. 

 Moving Least Squares approximation, requires 

only nodal data and no element connectivity, and 

therefore is more flexible than the conventional 

Finite element method. But the resulting shape 

function results doesn’t possess Kronecker Delta 

property 

 There is a huge problem in enforcing the boundary 

condition with Mesh-free method since its shape 

function lacks Kronecker Delta property. 

 Enforcement of boundary condition through 

Lagrangean multiplier and Penalty is used widely 

today, but there are both merits and de-merits 

involved with both these methods. 

 Purely mesh less methods like SPH and LPC are 

not being used in practice because of the stability 

issues which are need to be addressed. 
 

Problem Definition:  

A 2D cantilever, ABCD, of dimensions 2500mm * 

500mm * 1mm is considered. AB is fixed and a load 

of 500 N is applied at C. The material properties for 

the 2D cantilever are listed below: 
 

Table 4.1: Material Properties of the 2D cantilever. 

Properties Value 

Grade of Concrete M25 

Modulus of Elasticity 25000 N/mm
2
 

Poisson’s Ratio 0.15 

Coefficient of thermal 

expansion 
12 × 10

-6
/K 

Modulus of Rigidity 10869.5 N/mm
2 

 

 
Figure 3: Geometrical conFigureuration of 2D Cantilever 

 

MATLAB coding was developed for triangulated 

distribution of nodes such that the support domain of 

point of interest should cover the entire domain with 

minimum overlap. 
 

 
Figure 4: Distribution of nodes on 2D cantilever with nodal 

spacing of 250mm 
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The formulation of MATLAB coding for Mesh-Free 

method, FEM for the analysis of the 2D cantilever 

problem is given in Appendix in the form of flow 

chart. 
 

Results and Conclusions: 

1 Results: 

 
Figure 5: Comparison of displacement profile of 2D 

cantilever with FEM and Analytical solutions (nodal spacing 

= 250mm) 
 

A Parametric study was conducted on different nodal 

combination by varying the spacing of nodes. The 

nodes are distributed in triangulated fashion and the 

radius of support domain is fixed as 1.5 times the 

spacing for all the exercise.  The variation of the 

displacement along the length of the cantilever is 

captured and compared with analytical and FEM 

solutions. 

Exercise 1: Nodal spacing = 250 mm (Total number of 

nodes = 32) 
 

 
Figure 6: Distribution of nodes on 2D cantilever with nodal 

spacing of 125mm 
 

The result obtained from EFG method using Penalty 

approach is compared with FEM and Analytical 

solutions in a graphical format as shown in the Figure 
 

Since there are very less number of nodes (32), the 

solution is not converging to the actual solution 

properly, and the final displacement at free end is 

9.5mm. 

Exercise 2: Nodal spacing = 125 mm (Total number of 

nodes = 103) 

 
 

 
Figure 7: Comparison of displacement profile of 2D 

cantilever with FEM and Analytical solutions (nodal spacing 

= 125mm) 
 

 
Figure 8: Distribution of nodes on 2D cantilever with nodal 

spacing of 100mm 
 

The nodal spacing is reduced by 50% so as to have 

more number of nodes in the domain and trying to 

capture the difference 

 
Figure 9: Comparison of displacement profile of 2D 

cantilever with FEM and Analytical solutions (nodal spacing 

= 100mm) 
 

Since the nodal spacing is reduced by half, the error is 

reduced from 5% to 3.5% 

Exercise 3: Nodal spacing = 100 mm (Total number of 

nodes = 155) 
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Figure 10: Distribution of nodes on 2D cantilever with 

nodal spacing of 62.5mm 
 

 
Figure 11: Comparison of displacement profile of 2D 

cantilever with FEM and Analytical solutions (nodal spacing 

= 62.5mm) 
 

As the nodal spacing is further reduced, the error in 

the result also starts to converge to the actual, the error 

being 2.3%. 
 

Exercise 4: Nodal spacing = 62.5 mm (Total number 

of nodes = 365) 
 

 
Figure 12: Distribution of nodes on 2D cantilever with 

nodal spacing of 50mm 
 

Since the number of POI (121) is more in the domain 

the more exact deformation of the 2D cantilever is 

being captured (error = 1.5%). 
 

 Exercise 5: Nodal spacing = 50 mm (Total number of 

nodes = 556) 
 

As the nodal spacing is reduced to 50mm, the solution 

is almost converging to the actual (error = 0.1%). 
 

Convergence Studies: 

The displacement at the free end for the different 

nodal combination is taken and it is compared with 

analytical solution for the convergence studies. 

 
Figure 13: Comparison of displacement profile of 2D 

cantilever with FEM and Analytical solutions (nodal spacing 

= 50mm) 
 

 
Figure 14: Convergence study of the displacement 

 

It is evident from the graph that initially (number of 

nodes =29) the error is on the higher range (5%) and 

as the number of nodes increases the solution 

convergence and finally it matches almost with the 

original solution when the number of nodes increases 

beyond 550. 

The results are tabulated along with the error 

percentages for the various nodal combinations. 
 

Table 5.1: Comparison of displacement of nodes at the free 

end of the 2D cantilever 

Number 

of nodes 

Analytical 

solution 

(mm) 

Penalty 

Solution 

(mm) 

Percentage 

of error 

(%) 

32 10 9.500 5 

103 10 9.650 3.5 

155 10 9.770 2.3 

365 10 9.850 1.5 

556 10 9.990 0.1 
 

Conclusions: 

 The potential applicability of the purely meshless 

method was scrutinized. 

 Use of Background mesh is completely ruled out in 

evaluating stiffness matrices. 

 Direct integration technique performed bypasses 

the complexities involved in carrying out 

numerical integration using Gauss quadrature 

technique. 

 Mesh free solution converges to analytical solution 

with increase in number of nodes as seen from 

convergence study. 
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 The penalty method does not increase the number 

of unknowns and yields a positive definite matrix 

which is a significant advantage in practical 

applications 

 The symmetry and the bandedness of the system 

matrix are preserved as long as proper penalty co-

efficient is chosen. 

 Computational cost required by Penalty approach 

is lesser than that of Lagrange multiplier method. 
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