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Abstract: This study presents the macro- and micro-mechanical responses of granular materials under plane 

strain compression (PSC) using the discrete element method (DEM). Three cubical shaped samples having 

different void ratios were numerically prepared using eleven different sizes of spheres, the diameter of which 

ranges from 3 to 4 mm. The spheres were randomly placed in a cubical shaped sample in such a way that no 

sphere should touch the other and later, compressed isotropically to 100 KPa using the periodic boundaries. The 

numerical samples prepared in this way were subjected to shear deformation under PSC. It is noted that the 

simulated stress-strain-dilative behaviors are in good agreement with the experimental studies under PSC for 

different void ratios. The evolution of a non-dimensional parameter )]()([ 3132  b with axial strain 

for different void ratios is reported as well. The micro-responses depict that their evolution depends on the void 

ratio and loading conditions of the simulations. The fabric measure evolve during shear deformation is presented 

in details and it is noted that the evolution of fabric measure has an excellent similarity to that of the stress ratio 

in PSC. A relationship between the macro stress ratio and the micro-parameter is established as well. 
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1. Introduction: 

Plane strain compression (PSC) tests are necessary to 

model, for example, the behavior of long 

embankments for roads or railways, where the strain 

parallel to the longitudinal axis of the embankment is 

almost zero. Consequently, the investigation of the 

macro- and micro-behaviors of granular materials for 

PSC is significant. A number of experimental studies 

have been devoted in the literature to investigate the 

behavior of granular materials under PSC (e.g., 

Cornforth, 1964; Lee, 1970; Tatsuoka et al., 1986; 

Peters et al., 1988; Alshibli et al., 2003; Yasin and  

Tatsuoka, 2006; Alshibli and Akbas, 2007; Tejchman 

and Wu, 2010 ). In the experimental studies, the 

macro mechanical responses such as stress, strain, 

volumetric strain, dilatancy index, etc. can be 

observed easily; however, it is hardly possible to 

explore the micro-behavior of granular materials such 

as the coordination number, sliding contact fraction, 

evolution of fabric etc. at particle-scale in laboratory 

based experimental studies for PSC test under 

different void ratios because of the limitations of the 

current experimental facilities. It should be 

emphasized that the knowledge of micro-

characteristics is important to explain the 

macroscopic phenomena from the micro-mechanical 

point of view and to develop physically sound and 

micro-mechanical based continuum models. 

This inherent limitation of experiments can be 

avoided using the numerical approaches such as the 

DEM (Cundall and Strack, 1979), which can model 

the discrete behavior of granular materials and 

provide inside into the micro features of the 

particulate system. Using DEM, the evolution of 

micro variables can be studied and micro data can be 

extracted at any stage of simulation. However, there 

are inadequate studies reported in the literature that 

considered PSC in three-dimensional (3D) DEM for 

different void ratios to explore the micro-mechanical 

responses of granular materials comprehensively. For 

example, Ng (2004) considered several stress paths 

with different sample preparation methods to report 

the macro- and micro-responses of granular materials 

including PSC by 3D DEM. However, the evolution 

of a non-dimensional parameter b  defined as 

)()( 3132  b ,  where 1 , 2  and 3  

are the major, intermediate and minor principal 

stresses, respectively (along 1x -, 2x - and 3x - 

direction) for different void ratios under PSC is not 

reported and micro-mechanical responses are not 

studied sufficiently in earlier studies. Consequently, 

in the present study, the evolution of b value for 

different void ratios under PSC is reported and a 

comprehensive study of different micro-behaviors of 

granular materials under PSC by 3D DEM is 

presented. A linkage between the micro- and macro-

parameters is established as well.  

 

2. About DEM: 

Discrete element method (DEM) is one of the most 

popular discrete approaches that describe the internal 

behavior of granular materials such as sand in a 

particulate system. The method was first introduced 

by Cundall (1971) for rock mass problem and later, 
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extended to soil (Cundall and Strack, 1979). DEM 

has been proved to be a useful tool to understand the 

physical processes such as the rotation, acceleration, 

contact force etc. of each particle involved in the 

model. DEM has been used successfully in different 

disciplines of science and engineering. The major 

advantage of DEM is that the micro data can be 

monitored and extracted at any stage of simulation 

for the post process and analysis. The fundamental 

idea of DEM is simple.  Each particle is modeled as 

an element which can make and break contact with 

other elements included in the model. The DEM uses 

an explicit finite-difference scheme in which the 

calculation cycle includes the application of 

Newton’s second law of motion and a force 

displacement law. The accelerations of particles are 

calculated using the following formula: 

 

3,1 iFx iim                     (1)              

 MI                                  (2) 

 

where, Fi are the force components on each particle; 

M is the moment; m is the mass; I is the moment of 

inertia; ix  are the components of translational 

acceleration and   is the rotational acceleration of 

the particle. 

 

3. About the Program Code OVAL: 

In this study, computer code OVAL (Kuhn, 2006) is 

used. OVAL is written in FORTRAN and can run 

both in windows and Linux platform. Both 2D and 

3D simulation is possible using OVAL. The 

effectiveness of OVAL has already been recognized 

(Kuhn, 1999; Kuhn, 2005). In OVAL, a simple 

contact force mechanism consisting of linear springs 

in normal and tangential directions and a frictional 

slider are included. The coefficient of viscosity for 

translational and rotational body damping used in this 

program represents a fraction of the critical damping 

nmk2  and tIkr2 , where r , nk and tk   denotes 

the radius, normal and tangential contact stiffness of 

the particle, respectively. 

 

4. Preparation of Numerical Sample: 

In the present simulation, 8000 spheres (diameter 3 to 

4 mm) consisting of 11 different sizes were randomly 

generated in a cube. This initially generated sparse 

sample was consolidated to 100 kPa using the 

periodic boundaries in several steps by assigning the 

coefficient of inter-particle friction coefficient of 0.0, 

0.2 and 0.4 for the first, second and third samples, 

respectively. However, the desired inter-particle 

friction coefficient (i.e., 0.5) was used during shear. 

The characteristics of the three isotropically 

compressed samples S1, S2 and S3 are presented in 

Table 1. Coordination number in Table 1 is defined 

as twice the total number of contacts between 

particles divided by the total number of particles used 

in the simulation. 

 

Table 1: Characteristics of the three isotropically 

compressed samples 

 

 

5. Numerical Experiments: 

Three isotropically compressed samples having 

different void ratios were used for the numerical 

simulations of PSC test. Simulations of PSC test 

were carried out by applying a very small strain 

increment of 0.00002%  vertically downward in 1x - 

direction and keeping the strain in 2x - direction zero 

(i.e., 2d = 0) while maintaining the stress in 3x - 

direction constant (100 kPa). The simulation 

condition of PSC test with reference axes is depicted 

in Figure 1. The DEM parameters used in the 

numerical simulation are shown in Table 2.       

 

6. Numerical Result 

6.1 Macro-mechanical responses: 

The simulated stress-strain behavior for PSC test 

having different void ratios of the samples is depicted 

in Figure 2. It is noted that the stress ratio 31 

at small strain range followed by a huge strain 

softening, whereas for sample S3 (void ratio 0.73), 

31   gradually increases        

 
 

Figure 1: A cube element with reference axes and 

simulation conditions 

 

  

Sample 

Designation 
Void Ratio 

Coordination 

Number 

S1 0.58 5.9 

S2 0.68 4.8 

S3 0.73 4.2 

1

 

constant 

02 d  

increases 

2x  

3x  

1x  
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Table 2: DEM parameters used in the numerical 

simulation 

DEM parameters Value 

Normal contact stiffness (N/m) 
6 

Tangential contact stiffness (N/m) 
6
 

Mass density (Kg/m
3
) 2600 

Increment of time step (s) 1×10
-6 

Inter-particle friction coefficient 0.50 

Damping coefficients 0.05 

with axial strain 1  It is observed that 31   

merges each other at a large axial strain (at 1 =10% ) 

regardless of the void ratio of the samples. The 

behavior depicted in Figure 2 is a typical behavior for 

dense, medium and loose sand observed in the 

experimental studies under PSC. This numerical 

result is consistent with the experimental observation 

(e.g., Cornforth, 1964; Alshibli et al., 2003) which 

ensures the qualitative validation of the simulated 

stress-strain response. Similar tendency is also 

noticed in Figure 3 for the relationship between stress 

32   and 1 . Note that, the value of 

32   is small compared to 31   at the same 

strain level.                                                                                          

 
Figure 2: Relationship between stress ratio 31   

and axial strain 1  

 
Figure 3: Relationship between stress ratio 32 

and axial strain 1  

 

Figure 4 depicts the relationship between the 

volumetric strain v  and axial strain 1 . The 

volumetric strain is defined here as 

321  v , where 1 , 2  and 3  are the 

strains in 1x -, 2x - and 3x - direction, respectively. A 

positive value v  in Figure 4 represents 

compression, while a negative value represents 

dilation. From Figure 4, it is noted that the 

volumetric strain depicts a huge dilation in case of 

sample S1 (void ratio 0.58), whereas sample S3 (void 

ratio 0.73) depicts compressive behavior. Similar 

tendency is noticed in the experimental studies. It 

should be emphasized that the volumetric strain is 

increasing at 10% axial strain even though the stress 

ratio approaches to same value at this stage.                    

 

Figure 5 depicts the evolution of b value with 1 for 

different void ratios. Note that, b value increases 

gradually with 1 until it reaches a peak. The 

evolution of b  has nice similarity to that of the stress 

ratio. The evolution of b  depicts a unique 

characteristics at large strain for sample S2 and S3. 

The evolution of b for sample S3, on the other hand, 

depicts no unique behavior. However, it can be 

presumed that the unique characteristic might 

observe at a strain larger than 10% regardless of the 

void ratio of the numerical sample. 

 
Figure 4: v 

and axial strain 1  

 

 
Figure 5: Evolution of b value with 1  

for different 

void ratios of the sample 
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6.2 Micro-mechanical responses: 

One of the objectives of this paper is to report the 

micro-behavior of granular materials evolve during 

the simulation in PSC. Figure 6 depicts the evolution 

of coordination number with 1 while Figure 7 

depicts the evolution of sliding contact fraction in 

PSC for samples having different void ratios. 

Mathematically, coordination number and sliding 

contact fraction can be defined as follows: 

 

p

c

N

N
C

2


                                
(3) 

  
c

s
r

N

N
S

100


                        
(4) 

 

where cN
 
is the total number of contacts between 

particles, pN  is the total number of particles used in 

the simulation and sN  is the number of sliding 

contacts. Note that, both the coordination number and 

sliding contact fraction depict a unique behavior at 

the larger strain regardless of the void ratio of the 

numerical samples. This indicates that a critical state 

is reached for these micro-parameters at large strain. 

  

 
Figure 6: Evolution of coordination number C with 

axial strain 1  

 
Figure 7:  Evolution of sliding contact fraction rS

with axial strain 1  

 

The evolution of contact fabric ratios 3311 HH and 

3322 HH  for all contact is depicted in Figure 8 

while the evolution of contact fabric ratios 
ss HH 3311 and 

ss HH 3322  for strong contact is 

depicted in Figure 9. The contact fabric for all and 

strong contact is quantified using the following fabric 

tensors (Sazzad and Suzuki, 2012): 
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where, 
c
in and 

s
in  is the components of unit normal 

vector at c -th contact and s -th  strong contact, 

respectively. A contact is said to be a strong contact 

if it carries force greater than the average force. The 

average force is calculated as follows: 

 
c

N

k

k

ave
N

f
f

c

  1

2

                      (7) 

where kf is the k th force.  The evolution of fabric 

ratios 3311 HH and 3322 HH   for all contact does 

not truly represent the stress-strain behavior (see 

Figure 8), while the evolution of fabric ratios 
ss HH 3311 and 

ss HH 3322  for strong contact 

represents the stress-strain behavior vividly. This 

suggests a linkage between the stress ratio 31   

and fabric ratio 
ss HH 3311  and between the stress 

ratio 32   and fabric ratio
ss HH 3322  . 

The relationships between the fabric ratio 
ss HH 3311  

and the stress ratio 31   and between the fabric 

ratio 
ss HH 3322 and the stress ratio 32   are 

depicted in Figure 10. An excellent correlation 

between the fabric ratio and stress ratio is found. The 

relationship between them can be expression as 

follows: 

35.037.1
3

1

33

11 









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
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H
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31.033.1
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


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H
        (9) 

From equations (8) and (9), one can infer than the 

linkage between the fabric measure and stress ratio 

can be described by almost a common relationship.  
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Figure 8:  Evolution of (a) 3311 HH  with 1  
and 

(b) 3322 HH  with 1  
 

 

Figure 9:  Evolution of (a) 
ss HH 3311  with 1  

and 

(b) 
ss HH 3322  with 1  

 

 

 
Figure 10: Relationships between (a) the fabric ratio 

ss HH 3311  and the stress ratio 31   and (b) the 

fabric ratio 
ss HH 3322 and the stress ratio 32 

 
 

7. Conclusions: 

Numerical simulation of PSC tests are conducted in 

the present study to investigate the macro and micro- 

mechanical behavior of granular materials such as 

sand under varying void ratio. Three cubical shaped 

numerical samples were prepared using spheres to 

carry out the PSC test. The simulated macro results 

are in good agreement with the experimental results, 

which ensures the qualitative validation and 

versatility of the current simulated results. The micro 

behaviors are also studied in details. Few important 

points of this study can be noted as follows: 

 

i) The evolution of b value with axial strain has 

qualitative similarity with the evolution of stress ratio 

with axial strain and depicts uniqueness at large 

strain. 

ii) Micro parameters such as the coordination number 

and sliding contact fraction reach the critical state at 

small strain level for PSC conditions. 

iii) An excellent linkage between the contact fabric 

and stress ratio is established regardless of the void 

ratio of the numerical samples when only the strong 

contacts are considered. 

iv) The linkage between the fabric measures and 

stress ratios can be described by a linear relationship 

for PSC. 
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