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Abstract: This paper deals with the geometric nonlinear bending response of laminated composite cylindrical 

panels subjected to transverse loading. The eight-noded degenerated shell element with five degrees of freedom 

per node is adopted in the present analysis to model the composite cylindrical panels. The Green-Lagrange 

strain displacement relationship is adopted to formulate the matrices. The total Lagrangian approach is taken in 

the formulation. The arc-length method of solution is adopted in tracing the equilibrium path. The results by this 

method are compared with the available results and the conclusions are made.  
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Introduction:   

The composite cylindrical panels are extensively used 

in many modern engineering structures in aerospace, 

hydrospace, automobile, missile, petrochemical and 

building industries. This is primarily because of high 

stiffness-to-weight, high strength-to-weight and lower 

machining and maintenance cost of the composite 

structures. These composite structures can also be 

designed very effectively by managing the volume of 

fibers, orientation of the fibers, volume of matrix etc. 

according to the requirement. During the service life 

the composite cylindrical panels are subjected to 

heavy transverse load. At higher load the defection of 

the panels become large compared to its thickness. At 

this stage the linear solutions to this problem is not 

accurate. So a nonlinear analysis is preferred to trace 

the complete load-deformation curve. In many cases 

the laminated composite cylindrical panels becomes 

unstable at certain amount of transverse load also. 

These structures may experience snap-through or 

snap-back instability during bending. So a proper 

solution scheme is necessary to define the whole 

equilibrium path or the load-deformation path. The 

Newton-Raphson method of solving the nonlinear 

equilibrium equation will not work if any instability 

arises in the structure at any point of time or any point 

of loading. Both the load-control and displacement-

control fails in the snap-back type of instability. In 

this situation the arc-length method is one of the best 

option to be used in solving the nonlinear equation to 

trace the equilibrium path.    
 

The nonlinear bending analysis of the cylindrical shell 

panel has been carried out by many investigators. 

Sabir and Lock (1972) had used the strain-based finite 

element method to carry out a large deflection 

analysis of isotropic cylindrical shells. To solve the 

nonlinear equations Riks (1979) proposed a new 

solution procedure to overcome the limit points. 

Crisfield (1981) modified the Riks's approach and 

made it suitable for use in the finite element. This arc 

length method (Crisfield,1981) was applied in  

 

conjunction with the Newton–Raphson method in 

both standard and modified forms. It is a path 

following technique where both load and 

displacement are independent parameters.  
 

This method(Crisfield,1981) can handle snap-through 

and snap-back type of instability during bending. 

Chang and Sawamiphakdi (1981) had performed the 

large deformation analysis of laminated shells using 

finite element method. They had adopted a 

degenerated three-dimensional isoparametric element 

in the analysis. The nonlinear geometric element 

stiffness matrices were made on the basis of updated 

Lagrangian description. Sabir and Djoudi (1995) 

presented the results of geometrically nonlinear 

bending behaviour of shallow shells. Kim and 

Voyiadjis (1999) studied the nonlinear bending 

behaviour of moderately thick plates and shells using 

an eight noded shell element with six degrees of 

freedom per node. It was limited to geometric  

imperfections that reduce the buckling capacity. Sze 

et.al (2004) had analyzed the popular benchmark shell 

problems with geometric nonlinearity. They have 

solved eight benchmark shell problems by ABAQUS 

finite element software taking the effect of geometric 

nonlinearity and plotted the load-deflection curves. 

Kundu and Sinha (2007) had presented the post-

buckling analysis of transversely loaded laminated 

composite shells by finite element method.  
 

In the present investigation the nonlinear bending 

analysis of laminated composite cylindrical panels is 

carried out. The eight-noded degenerated shell 

element with five degrees of freedom per node is 

adopted in the present analysis to model the 

cylindrical panels. The Green-Lagrange strain 

displacement relationship is adopted and the total 

Lagrangian approach is taken in the formulation of the 

matrices. The material behaviour is assumed to be 

linear and elastic. The nonlinear equilibrium 

equations are solved by Crisfield arc-length method as 
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explained by Fafard and Massicotte(1991) and the 

results are reported. 
 

Formulation  

The cylindrical panels are modeled with Ahmad et 

al.’s (1970) degenerated shell element with Green-

Lagrange strain displacement relationship and 

laminated composite material properties. The element 

contains five degree of freedom per node, θz is 

neglected. Shear correction factor of 5/6 is adopted in 

the stress-strain relationship for transverse shear 

stresses. The formulation of the shell element is 

presented below. 
 

Shell Element 

The formulation of the present shell element is based 

on the basic concept of Ahmad et al.'s (1970) shell 

element, where the three-dimensional solid element 

used to model the shell is degenerated with the help of 

certain extractions obtained from the consideration 

that the dimension across the shell thickness is 

sufficiently small compared to other dimensions. The 

detail derivation of this element for isotropic case and 

with linear strain displacement is available in the 

literature (Ahmad et al. 1970; Zienkiewicz 1977; Rao 

1999). 
 

The element has a quadrilateral shape having eight 

nodes as shown in Fig.1a where the external top and 

bottom surfaces of the element are curved with linear 

variation across the shell thickness. Figure 1b shows 

the global Cartesian and local co-ordinate system at 

any node i. The geometry of the element can be nicely 

represented by the natural coordinate system (ξ, η and 

ζ) where the curvilinear coordinates (ξ-η) are in the 

shell mid-surface while ζ  is linear coordinate in the 

thickness direction. According to the isoparametric 

formulation, these coordinates (ξ, η and ζ) will vary 

from -1 to +1 on the respective faces of the element. 

The relationship(Eqn.1) between the global Cartesian 

coordinates (x, y and z) at any point of the shell 

element with the curvilinear coordinates holds good. 

This is the geometry of an element, which is described 

by the coordinates of a set of points taken at the top 

and bottom surfaces, where the line joining a pair of 

points (i
top 

and i
bottom

) is along the thickness direction 

i.e., normal to the mid-surface at the i
th

 node point. 

The line joining the top and bottom points is the 

normal vector(V3i) at the nodal point i. 
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Where Ni are the quadratic serendipity shape 

functions in (ξ-η) plane of the two-dimensional 

element.  
 

Eqn. (1) may be rewritten in terms of mid-surface 

nodal coordinates with the help of unit nodal 

vectors(v3i) along the thickness direction as, 
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Where, l3i,m3i and n3i are direction cosines of the nodal 

vector(V3i), i.e. components of unit nodal vectors (v3i), 

v3i is the unit vector along  (V3i) direction, hi is the 

thickness at node i. 

 

 
Figure 1a Eight-noded quadrilateral degenerated shell 

element in curvilinear co-ordinates. 
 

 
Figure 1b Global Cartesian co-ordinate (x, y and z) 

and local co-ordinate system at any node i. 
 

Two orthogonal tangential vectors V2i and V1i are 

formed at the node i which are normal to V3i vector. 

The two tangential vectors V2i and V1i not necessarily 

follow ξ and η directions. The unit vectors along V2i  

and V1i directions are v2i and v1i. The local co-

ordinates x', y' and z' are directed along V1, V2 and V3 

directions respectively. The directions cosines of x',y' 

and z' and V1, V2 and V3 are same as the components 

of unit vectors v1, v2 and v3. The displacement u,v and 

w are along the global coordinates x,y and z 

directions. Similarly the local displacement 

components u',v' and w' are along the local 
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coordinates x',y' and z' directions. The rotations of the 

mid surface normal θx and θy are taken about the local 

coordinates y' and x' or v2 and v1 directions 

respectively. 
 

The displacement field(Eqn.3) of a point within the 

element can be defined with the help of three mid 

surface nodal translational displacement(ui, vi and wi) 

along the global Cartesian co-ordinates directions and 

two rotational components θxi and θyi about the local 

coordinates y' and x' directions. 

 

 
 
 
 
  

    
 
           

  

  
  

  

    
 
         

    

   
  
      
      

      

    
   
   

                   

(3)                                                             

 

Where, l1i,m1i and n1i are direction cosines of the nodal 

vector(V1i), i.e components of v1i, l2i,m2i and n2i are 

direction cosines of the nodal vector(V2i), i.e 

components of v2i, and  {d} is nodal displacement 

vector,  

 

{d} =[ u1 v1 w1 θx1  θy1  u2 v2 ---- -----  θx8  θy8 ]
T
                           

(4)   

 

The strain displacement relationship with Green-

Lagrange strain of the element in local co-ordinate 

system(x'-y'-z') can be expressed as, 
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After performing number of operations using equation 

(2) and (3) we can write, 

 

         
       

 

 
     

                                                                                     

(7) 

 

         
       

 

 
        

                                                                                

(8) 

Where,    
   and    

   are strain-displacement 

matrices with respect to linear and nonlinear strain 

components respectively in local co-ordinate 

system(x'-y'-z'). The normal strain      along    

direction is neglected.  
 

Knowing, the stress-strain relationship of the 

laminated composite material in each layer in its 

material axis system(1-2-3), the stress-strain 

relationship in the local co-ordinate systems(x'-y'-z') 

can be found out by simple transformation. Here 

material axis 3 is directed along z' direction.  The 

material axes 1-2 lie in x'-y' plane but it can be 

oriented at some angle . After transformation the 

stress-strain relationship in the local co-ordinate 

systems can be written as, 
 

                              (9) 
 

After finding    
  ,     

   and       matrices the secant 

stiffness matrix can be expressed as, 
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This secant stiffness matrix is not symmetric. To 

efficiently use the storage scheme which is used in 

linear analysis, this non symmetric scant stiffness 

matrix can be made symmetric (Wood and Schrefler 

1978) as,  
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 Where,      matrix is stress-strain matrix in local co-

ordinate system, and     and      are stress matrix 

in local co-ordinate system for linear and nonlinear 

parts of the strain respectively.  
 

The tangent stiffness matrix, which is used in the 

nonlinear solution of the equilibrium equation by 

Newton-Raphson method, can be written as, 
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The secant and tangent stiffness matrices of all 

elements of the laminated composite cylindrical panel 

is calculated and assembled properly to form the 

global secant and tangent stiffness matrices of the 

structure. The load vector is calculated. The nonlinear 

equilibrium equations are solved by Crisfield arc-

length method as explained by Fafard and 

Massicotte(1991). The tolerance is defined with 

respect to the displacement criterion. 
 

Results and Discussions 

The convergence and validation of the formulation is 

tested first by taking different examples which are 

solved by earlier investigators. A hinged cylindrical 

panel subjected to concentrated load with isotropic 

and laminated composite material properties is taken 

for this purpose. 
 

 Hinged isotropic cylindrical panel subjected to 

concentrated load 
 

A hinged isotropic cylindrical panel (Fig.2) is 

considered for the validation of the results. The 

straight edges are hinged and the curved edges are 

free. The curved edge length is 508mm and the angle 

θ is 0.1 radian. The projection of the curved edge 

length is 507.153mm, but for analysis we can take it 

as 508mm. The concentrated load P is applied at the 

centre of the panel. The Young's modulus(E) is taken 

as 3105 N/mm
2
 and the Poisson's ratio(ν) is 0.3. 

 

 
 

Figure 2. Hinged cylindrical panel subjected to point 

load 
 

The whole panel is modeled with 8×8 mesh for the 

analysis. The load deflection curve of the present 

analysis is presented in Fig.3, along with the finite 

element results of  Sabir and Lock (1972), 

Crisfield(1981) and Sze et.al (2004). The cylindrical 

panel is showing a snap-through type of instability 

during the bending process. It can be observed that the 

present results are matching well with the results of 

Sabir and Lock (1972), Crisfield(1981) and Sze et.al 

(2004) upto the limit point. The present solution 

scheme is unable to trace the curve beyond the limit 

point. It needs little modification in the computer 

programming, which is being carried out.  

 

 

 
Figure 3. Load-deflection curve for the isotropic 

hinged cylindrical panel subjected to point load 
 

Hinged laminated composite cylindrical panel 

subjected to concentrated load 
 

The same cylindrical panel with same geometry and 

loading is taken again to validate the present 

formulation with the composite material properties. 

The panel consist of three layer with equal thickness 

of lamina with 90/0/90 lamination scheme. The 

numbering of layers starts from the bottom to the top 

of the panel. The layer with 0
0
 lamination means the 

fibers are aligned in the longitudinal direction(i.e. 

towards y-direction). The whole panel is modeled 

with 8×8 mesh for the analysis in this case also. The 

material properties considered are, E1=3300 N/mm
2
, 

E2=1100 N/mm
2
, G12= G13= G23=660 N/mm

2
 and 

ν12=0.25. The panel is subjected to a concentrated 

load at the centre. The equilibrium path is plotted in 

Fig.4 along with the finite element result of Sze et.al 

(2004). In this case also the present results are 

matching well upto the limit point with the results of 

Sze et.al (2004). 

 

 
Figure 4. Load-deflection curve for the laminated 

composite hinged cylindrical panel(90/0/90) subjected 

to point load 
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Conclusions: 

The findings of the present investigation can be 

summarized as, 

1. The formulation and geometrically nonlinear 

analysis of laminated composite cylindrical panel 

with Green-Lagrange strain displacement 

relationship in total Lagrangian co-ordinate is 

presented. A computer program with Fortran 90 

is developed to implement the formulation and 

the results are obtained. 

2. The deflection results are matching well with the 

previous results upto the limit point both in 

isotropic and composite case. 
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